Euler 下载 网盘 kindle mobi 115盘 pdf pdb rtf

Euler电子书下载地址
内容简介:
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
书籍目录:
Chapters
1. Euler and Number Theory
2. Euler and Logarithms
3. Euler and Infinite Series
4. Euler and Analytic Number Theory
5. Euler and Complex Variables
6. Euler and Algebra
7. Euler and Geometry
8. Euler and Combinatorics
Conclusion
Appendix: Euler’s Opera Omnia
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Leonhard Euler (1707-1783) was a man of faith: by evening he led the family Bible study, and by day he manipulated infinite series and assigned limits also by faith, if not by sight. Lacking clear definitions and useful theorems for the concepts of function, limit, and convergence, unencumbered by logical rigor, and despite progressive blindness, Euler did not hesitate to invent extraordinarily creative ways to manipulate equations and discover new truths in all fields of mathematics. Later generations have marveled at Euler’s insight and creativity, even as they have established rigorous verifications for his results.
Euler’s greatest early fame came in 1735 when he solved Jakob Bernoulli’s “Basel problem” by establishing the remarkable result that the sum of the reciprocals of the squares of the positive integers converges to one-sixth the square of pi. His collected works, written in Latin, French, and German, comprise more than 70 volumes. Thus, despite Laplace’s famous advice to “Read Euler, read Euler,” many modern inquirers will choose instead to read Dunham’s superb introduction to Euler’s accomplishments in eight selected areas of mathematics (number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics). Dunham writes for a mathematically literate reader who has mastered calculus, but not necessarily much beyond that. For each topic, Dunham sets the mathematical context, provides clear, concise, and sometimes beautiful explanations of Euler’s accomplishments, and mentions subsequent developments by other mathematicians.
Dunham includes a short biography, and repeatedly envisions how Euler must have enjoyed his unexpected twists of thought. The reader also should smile at Euler’s inventiveness, such as when he used the divergence of the harmonic series to show that there are infinitely many primes.
网站评分
书籍多样性:3分
书籍信息完全性:7分
网站更新速度:7分
使用便利性:3分
书籍清晰度:9分
书籍格式兼容性:7分
是否包含广告:6分
加载速度:4分
安全性:3分
稳定性:4分
搜索功能:3分
下载便捷性:8分
下载点评
- 微信读书(219+)
- txt(586+)
- 已买(108+)
- 图书多(504+)
- 方便(242+)
- 下载速度快(650+)
- 速度慢(448+)
- 二星好评(582+)
下载评价
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 曾***玉:
直接选择epub/azw3/mobi就可以了,然后导入微信读书,体验百分百!!!
- 网友 詹***萍:
好评的,这是自己一直选择的下载书的网站
- 网友 寇***音:
好,真的挺使用的!
- 网友 林***艳:
很好,能找到很多平常找不到的书。
- 网友 习***蓉:
品相完美
- 网友 权***波:
收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!
- 网友 訾***晴:
挺好的,书籍丰富
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
喜欢"Euler"的人也看了
澳大利亚攻略(最新超值版) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
小手翻翻(套装全12册) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
初中化学基础知识及考点突破 下载 网盘 kindle mobi 115盘 pdf pdb rtf
生活不会辜负每一份努力 下载 网盘 kindle mobi 115盘 pdf pdb rtf
四大名著 下载 网盘 kindle mobi 115盘 pdf pdb rtf
海外直订My First Bilingual Book - Vegetables (English-P... 我的第一本双语书——蔬菜(英-波兰语) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
一学就会的100个小魔术:演示解说版 下载 网盘 kindle mobi 115盘 pdf pdb rtf
美国国家地理科普双语启蒙书.生命奥秘正版 下载 网盘 kindle mobi 115盘 pdf pdb rtf
苹果英语考研红皮书:2015四大名师历年考研英语真题超详解及复习指导(试卷版) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
小日子:你的身体还好吗了解自己的身体病痛家庭医生书籍养生健康书籍 疏松筋骨中医推拿疾病预防健身书健康之路养生书保健书正版 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 新编管理信息系统 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 官方正版2022年一级建造师教材:公路工程管理与实务历年真题+冲刺试卷 中国建筑工业出版社 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 小雨作文学霸作文 小学生500字限字作文 四、五年级适用 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 当东方相遇西方 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 沙盘师实践与成长--体验式团体沙盘心理技术操作手册/沙盘中国之应用系列 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 物理化学(上) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 医方考 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 耿小辉实用英语大全(旅游口语一次彻底学会) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 企业财税管理实操从新手到高手 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 娱死记 下载 网盘 kindle mobi 115盘 pdf pdb rtf
书籍真实打分
故事情节:3分
人物塑造:5分
主题深度:4分
文字风格:5分
语言运用:4分
文笔流畅:6分
思想传递:8分
知识深度:8分
知识广度:5分
实用性:3分
章节划分:4分
结构布局:8分
新颖与独特:4分
情感共鸣:6分
引人入胜:6分
现实相关:7分
沉浸感:9分
事实准确性:4分
文化贡献:5分