Making sense of data了解数据:探索数据分析与数据挖掘实用指南 下载 网盘 kindle mobi 115盘 pdf pdb rtf

Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:7分
书籍信息完全性:3分
网站更新速度:3分
使用便利性:9分
书籍清晰度:6分
书籍格式兼容性:6分
是否包含广告:8分
加载速度:3分
安全性:5分
稳定性:9分
搜索功能:6分
下载便捷性:3分
下载点评
- 书籍多(495+)
- 愉快的找书体验(659+)
- 小说多(456+)
- 无多页(500+)
- 四星好评(77+)
- epub(212+)
下载评价
- 网友 濮***彤:
好棒啊!图书很全
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 焦***山:
不错。。。。。
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 国***芳:
五星好评
- 网友 车***波:
很好,下载出来的内容没有乱码。
- 网友 扈***洁:
还不错啊,挺好
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 訾***雰:
下载速度很快,我选择的是epub格式
- 网友 陈***秋:
不错,图文清晰,无错版,可以入手。
- 网友 饶***丽:
下载方式特简单,一直点就好了。
- 网友 瞿***香:
非常好就是加载有点儿慢。
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
尤斯伯恩·我的第一本英语单词书:学校小百科 下载 网盘 kindle mobi 115盘 pdf pdb rtf
海外直订The Step-by-Step Way to Draw Pony: A Fun and Easy Drawing Book to Lear 一步一步地画小马:学习如何画小马的有趣而简单的画册 下载 网盘 kindle mobi 115盘 pdf pdb rtf
呆萌小动物画起来·喵星人与汪星人/绘·森·活 下载 网盘 kindle mobi 115盘 pdf pdb rtf
中公版·2013政法干警招录培养考试专用教材 下载 网盘 kindle mobi 115盘 pdf pdb rtf
2024新版新教材完全解读八年级上册道德与法治人教版初二8年级上册上册政治RJ版书教材解读同步习题讲解辅导资料书初中噷KXYB 下载 网盘 kindle mobi 115盘 pdf pdb rtf
酒吧服务与管理 下载 网盘 kindle mobi 115盘 pdf pdb rtf
刘志宏传奇五种 下载 网盘 kindle mobi 115盘 pdf pdb rtf
环境手绘效果图快速表现(普通高等院校建筑专业十一五规划精品教材) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
网络工程设计与实施综合实训(清华开发者书库) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
我的肚脐眼怎么了? 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- Lonely Planet孤独星球:你所不知道的世界 澳大利亚 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 构建"阳光国企" 中国社会科学出版社 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 幾米袖珍本2000-2002 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 孕前准备百科 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- CCNP实战指南:故障排除 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 周礼注疏 (清)郑玄 注,(唐)贾公彦疏,彭林 整理 上海古籍出版社,【正版保证】 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 各国人权行动计划的制定、实施与评估研究 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 喜庆窗花——吉祥剪纸 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 资产价值评估工作手册-分步练习和测试(第3版) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 孟子诠解文白对照全4册精装图文版 孟子著原文注释白话译文 孟子原典解读 孟子典故释义00 下载 网盘 kindle mobi 115盘 pdf pdb rtf
书籍真实打分
故事情节:3分
人物塑造:3分
主题深度:8分
文字风格:4分
语言运用:5分
文笔流畅:3分
思想传递:4分
知识深度:4分
知识广度:7分
实用性:8分
章节划分:7分
结构布局:3分
新颖与独特:8分
情感共鸣:4分
引人入胜:3分
现实相关:4分
沉浸感:7分
事实准确性:8分
文化贡献:7分