考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) 下载 网盘 kindle mobi 115盘 pdf pdb rtf

考研数学常考题型解题方法技巧归纳(数学二)(毛纲源)电子书下载地址
- 文件名
- [epub 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) epub格式电子书
- [azw3 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) azw3格式电子书
- [pdf 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) pdf格式电子书
- [txt 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) txt格式电子书
- [mobi 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) mobi格式电子书
- [word 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) word格式电子书
- [kindle 下载] 考研数学常考题型解题方法技巧归纳(数学二)(毛纲源) kindle格式电子书
内容简介:
暂无相关简介,正在全力查找中!
书籍目录:
p
>
�
�
�
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
b
r
/
>
b
r
/
>
1
.
1
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
1
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
)
b
r
/
>
b
r
/
>
1
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
2
.
1
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
)
b
r
/
>
b
r
/
>
1
.
1
.
3
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
)
b
r
/
>
b
r
/
>
1
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
1
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
)
b
r
/
>
b
r
/
>
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
1
.
2
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
N
&
r
d
q
u
o
;
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
&
d
e
l
t
a
;
&
r
d
q
u
o
;
&
l
d
q
u
o
;
&
e
p
s
i
l
o
n
;
�
�
�
X
&
r
d
q
u
o
;
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
4
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
1
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
1
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
1
�
�
�
0
0
�
�
�
�
�
�
&
i
n
f
i
n
;
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
2
�
�
�
0
&
m
i
d
d
o
t
;
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
2
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
3
�
�
�
&
i
n
f
i
n
;
-
&
i
n
f
i
n
;
�
�
�
�
�
�
�
�
�
(
2
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
2
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
0
0
�
�
�
�
�
�
&
i
n
f
i
n
;
0
�
�
�
�
�
�
1
&
i
n
f
i
n
;
�
�
�
)
�
�
�
�
�
�
(
2
2
)
b
r
/
>
b
r
/
>
1
.
2
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
n
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
2
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
3
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
2
)
b
r
/
>
b
r
/
>
1
.
2
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
4
�
�
�
�
�
�
l
n
f
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
l
i
m
x
&
r
a
r
r
;
�
�
�
f
(
x
)
=
1
(
3
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
4
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
3
9
)
b
r
/
>
b
r
/
>
1
.
2
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
x
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
(
4
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
1
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
,
�
�
�
�
�
�
&
p
h
i
;
(
n
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
F
(
x
)
g
(
n
)
(
4
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
2
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
,
�
�
�
�
�
�
&
p
h
i
;
(
n
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
g
(
n
)
F
(
x
)
(
4
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
3
�
�
�
l
i
m
t
&
r
a
r
r
;
t
0
&
p
h
i
;
(
t
,
x
)
�
�
�
�
�
�
�
�
�
&
p
h
i
;
(
t
,
x
)
�
�
�
�
�
�
�
�
�
�
�
�
F
(
x
)
g
(
t
)
�
�
�
�
�
�
g
(
t
)
F
(
x
)
�
�
�
(
4
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
5
.
4
�
�
�
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
&
p
h
i
;
(
n
,
x
)
=
l
i
m
n
&
r
a
r
r
;
&
i
n
f
i
n
;
F
(
n
,
x
)
g
(
x
,
n
)
�
�
�
l
i
m
t
&
r
a
r
r
;
t
0
&
p
h
i
;
(
t
,
x
)
=
l
i
m
t
&
r
a
r
r
;
t
0
F
(
t
,
x
)
g
(
x
,
t
)
(
4
2
)
b
r
/
>
b
r
/
>
1
.
2
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
6
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
6
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
4
9
)
b
r
/
>
b
r
/
>
1
.
2
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
7
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
4
)
b
r
/
>
b
r
/
>
1
.
2
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
8
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
8
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
5
9
)
b
r
/
>
b
r
/
>
1
.
2
.
9
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
9
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
2
.
9
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
4
)
b
r
/
>
b
r
/
>
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
1
.
3
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
6
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
1
.
3
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
2
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
7
)
b
r
/
>
b
r
/
>
1
.
3
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
3
.
1
�
�
�
�
�
�
�
�
�
f
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
3
.
2
�
�
�
�
�
�
f
(
x
)
=
�
�
�
&
p
h
i
;
(
x
)
�
�
�
g
(
x
)
�
�
�
�
�
�
�
�
�
�
�
�
(
7
8
)
b
r
/
>
b
r
/
>
1
.
3
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
4
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
8
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
4
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
0
)
b
r
/
>
b
r
/
>
1
.
3
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
5
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
5
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
3
)
b
r
/
>
b
r
/
>
1
.
3
.
6
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
5
)
b
r
/
>
b
r
/
>
1
.
3
.
7
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
9
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
�
�
�
f
&
P
r
i
m
e
;
(
&
x
i
;
)
=
0
(
9
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
2
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
c
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
d
g
&
p
r
i
m
e
;
(
&
x
i
;
)
�
�
�
�
�
�
�
�
�
c
,
d
�
�
�
�
�
�
�
�
�
(
9
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
3
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
g
(
&
x
i
;
)
f
&
p
r
i
m
e
;
(
&
x
i
;
)
h
(
&
x
i
;
)
f
(
&
x
i
;
)
=
Q
(
&
x
i
;
)
(
9
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
4
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
=
0
(
9
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
5
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
-
f
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
(
1
0
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
6
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
P
r
i
m
e
;
(
&
x
i
;
)
g
(
&
x
i
;
)
-
f
(
&
x
i
;
)
g
&
P
r
i
m
e
;
(
&
x
i
;
)
=
0
(
1
0
0
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
7
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
f
(
&
x
i
;
)
=
0
(
1
0
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
8
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
n
f
(
&
x
i
;
)
&
x
i
;
f
&
p
r
i
m
e
;
(
&
x
i
;
)
=
0
(
n
�
�
�
�
�
�
�
�
�
�
�
�
)
(
1
0
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
9
�
�
�
�
�
�
�
�
�
�
�
�
&
x
i
;
&
i
s
i
n
;
(
a
,
b
)
�
�
�
�
�
�
f
&
p
r
i
m
e
;
(
&
x
i
;
)
g
&
p
r
i
m
e
;
(
&
x
i
;
)
�
�
�
f
(
&
x
i
;
)
-
b
&
x
i
;
�
�
�
=
b
(
1
0
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
3
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
7
.
1
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
4
)
b
r
/
>
b
r
/
>
1
.
3
.
8
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
5
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
0
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
8
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
0
)
b
r
/
>
b
r
/
>
1
.
3
.
9
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
1
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
9
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
2
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
9
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
2
)
b
r
/
>
b
r
/
>
1
.
3
.
1
0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
4
)
b
r
/
>
b
r
/
>
1
.
3
.
1
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
6
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
2
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
(
1
1
7
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
3
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
8
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
4
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
1
9
)
b
r
/
>
b
r
/
>
�
�
�
�
�
�
1
.
3
.
1
1
.
5
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
(
1
2
1
)
b
r
/
>
b
r
/
>
1
.
3
.
1
2
�
�
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
暂无其它内容!
网站评分
书籍多样性:8分
书籍信息完全性:4分
网站更新速度:9分
使用便利性:6分
书籍清晰度:6分
书籍格式兼容性:5分
是否包含广告:7分
加载速度:6分
安全性:3分
稳定性:7分
搜索功能:9分
下载便捷性:7分
下载点评
- 无缺页(310+)
- 收费(88+)
- 无多页(523+)
- 差评少(365+)
- 无水印(213+)
- 不亏(286+)
- 购买多(340+)
- 字体合适(477+)
- 超值(175+)
- 书籍多(77+)
- 中评多(241+)
- 经典(168+)
下载评价
- 网友 石***致:
挺实用的,给个赞!希望越来越好,一直支持。
- 网友 融***华:
下载速度还可以
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 石***烟:
还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的
- 网友 孙***美:
加油!支持一下!不错,好用。大家可以去试一下哦
- 网友 养***秋:
我是新来的考古学家
- 网友 龚***湄:
差评,居然要收费!!!
- 网友 孔***旋:
很好。顶一个希望越来越好,一直支持。
- 网友 曹***雯:
为什么许多书都找不到?
喜欢"考研数学常考题型解题方法技巧归纳(数学二)(毛纲源)"的人也看了
杨鹏解读《道德经》 下载 网盘 kindle mobi 115盘 pdf pdb rtf
7号人轻松粘土魔法书 下载 网盘 kindle mobi 115盘 pdf pdb rtf
谢灵运诗歌在英语世界的译介及研究 下载 网盘 kindle mobi 115盘 pdf pdb rtf
2011工程造价计价与控制 下载 网盘 kindle mobi 115盘 pdf pdb rtf
皮克茜洛物同名专辑CD 下载 网盘 kindle mobi 115盘 pdf pdb rtf
编辑必备语词规范手册 下载 网盘 kindle mobi 115盘 pdf pdb rtf
素描基础教程:从结构到明暗(套装共4册) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
拯救海象/汪汪队立大功儿童安全救援漫画故事书 下载 网盘 kindle mobi 115盘 pdf pdb rtf
香奈儿鉴赏购买指南 下载 网盘 kindle mobi 115盘 pdf pdb rtf
9787511853073 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 全面预算管理 李明 编著 中信出版社【正版】 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 中国儿童共享的经典丛书:白求恩的故事 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 复活(赠送价值15元的原版DVD影碟) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 黄冈新作文 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 朗贝尔先生 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 唐高宗的真相 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 理想树 2020版 教材划重点 高中政治 必修4 RJ 人教版 教材全解读 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 无机材料的结构与性能(李国华) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 2021版监理工程师 教材 建设工程投资控制(土木建筑工程) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 盛唐名将郭子仪 下载 网盘 kindle mobi 115盘 pdf pdb rtf
书籍真实打分
故事情节:7分
人物塑造:5分
主题深度:9分
文字风格:7分
语言运用:7分
文笔流畅:3分
思想传递:5分
知识深度:3分
知识广度:7分
实用性:4分
章节划分:7分
结构布局:9分
新颖与独特:6分
情感共鸣:3分
引人入胜:5分
现实相关:8分
沉浸感:8分
事实准确性:5分
文化贡献:4分