Python预测之美:数据分析与算法实战 下载 网盘 kindle mobi 115盘 pdf pdb rtf

Python预测之美:数据分析与算法实战电子书下载地址
内容简介:
Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,因此,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析与应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护起来更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。
《Python预测之美:数据分析与算法实战》共分为三部分。第一部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路。第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心品味。第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实践中提炼价值。
书籍目录:
第1 篇 预测入门
第1 章 认识预测 . 2
1.1 什么是预测 . 2
1.1.1 占卜术 . 3
1.1.2 神秘的地动仪 . 3
1.1.3 科学预测 . 5
1.1.4 预测的原则 . 7
1.2 前沿技术 . 9
1.2.1 大数据与预测 . 10
1.2.2 大数据预测的特点 11
1.2.3 人工智能与预测 . 15
1.2.4 人工智能预测的特点 . 17
1.2.5 典型预测案例 . 18
1.3 Python 预测初步 . 26
1.3.1 数据预处理 . 27
1.3.2 建立模型 . 31
1.3.3 预测及误差分析 . 34
第2 章 预测方法论 . 37
2.1 预测流程 . 37
2.1.1 确定主题 . 38
2.1.2 收集数据 . 40
2.1.3 选择方法 . 42
2.1.4 分析规律 . 43
2.1.5 建立模型 . 48
2.1.6 评估效果 . 51
2.1.7 发布模型 . 52
2.2 指导原则 . 53
2.2.1 界定问题 . 53
2.2.2 判断预测法 . 55
2.2.3 外推预测法 . 56
2.2.4 因果预测法 . 58
2.3 团队构成 . 59
2.3.1 成员分类 . 59
2.3.2 数据氛围 . 61
2.3.3 团队合作 . 63
第3 章 探索规律 . 65
3.1 相关分析 . 65
3.1.1 自相关分析 . 65
3.1.2 偏相关分析 . 68
3.1.3 简单相关分析 . 69
3.1.4 互相关分析 . 80
3.1.5 典型相关分析 . 82
3.2 因果分析 . 87
3.2.1 什么是因果推断 . 87
3.2.2 因果推断的方法 . 90
3.2.3 时序因果推断 . 93
3.3 聚类分析 . 98
3.3.1 K-Means 算法 . 98
3.3.2 系统聚类算法 . 102
3.4 关联分析 110
3.4.1 关联规则挖掘 110
3.4.2 Apriori 算法 . 111
3.4.3 Eclat 算法 120
3.4.4 序列模式挖掘 . 123
3.4.5 SPADE 算法 124
第4 章 特征工程 . 136
4.1 特征变换 . 136
4.1.1 概念分层 . 137
4.1.2 标准化 . 138
4.1.3 离散化 . 141
4.1.4 函数变换 . 143
4.1.5 深入表达 . 144
4.2 特征组合 . 145
4.2.1 基于经验 . 145
4.2.2 二元组合 . 146
4.2.3 高阶多项式 . 148
4.3 特征评价 . 151
4.3.1 特征初选 . 151
4.3.2 影响评价 . 152
4.3.3 模型法 . 167
4.4 特征学习 . 172
4.4.1 基本思路 . 173
4.4.2 特征表达式 . 174
4.4.3 初始种群 . 183
4.4.4 适应度 . 185
4.4.5 遗传行为 . 187
4.4.6 实例分析 . 192
第2 篇 预测算法
第5 章 参数优化 . 199
5.1 交叉验证 . 199
5.2 网格搜索 . 201
5.3 遗传算法 . 203
5.3.1 基本概念 . 203
5.3.2 遗传算法算例 . 204
5.3.3 遗传算法实现步骤 . 209
5.3.4 遗传算法Python 实现 210
5.4 粒子群优化 . 213
5.4.1 基本概念及原理 . 213
5.4.2 粒子群算法的实现步骤 . 214
5.4.3 用Python 实现粒子群算法 215
5.5 模拟退火 . 220
5.5.1 基本概念及原理 . 220
5.5.2 模拟退火算法的实现步骤 . 221
5.5.3 模拟退火算法Python 实现 222
第6 章 线性回归及其优化 226
6.1 多元线性回归 . 226
6.1.1 回归模型与基本假定 . 226
6.1.2 最小二乘估计 . 227
6.1.3 回归方程和回归系数的显著性检验 . 228
6.1.4 多重共线性 . 229
6.2 Ridge 回归 233
6.2.1 基本概念 . 233
6.2.2 岭迹曲线 . 233
6.2.3 基于GCV 准则确定岭参数 . 235
6.2.4 Ridge 回归的Python 实现 . 237
6.3 Lasso 回归 . 237
6.3.1 基本概念 . 237
6.3.2 使用LAR 算法求解Lasso . 238
6.3.3 Lasso 算法的Python 实现 . 240
6.4 分位数回归 . 242
6.4.1 基本概念 . 242
6.4.2 分位数回归的计算 . 245
6.4.3 用单纯形法求解分位数回归及Python 实现 246
6.5 稳健回归 . 248
6.5.1 基本概念 . 249
6.5.2 M 估计法及Python 实现 . 250
第7 章 复杂回归分析 . 254
7.1 梯度提升回归树(GBRT) . 254
7.1.1 Boosting 方法简介 254
7.1.2 AdaBoost 算法 255
7.1.3 提升回归树算法 . 257
7.1.4 梯度提升 . 259
7.1.5 GBRT 算法的Python 实现 261
7.2 深度神经网络 . 264
7.2.1 基本概念 . 264
7.2.2 从线性回归说起 . 269
7.2.3 浅层神经网络 . 272
7.2.4 深层次拟合问题 . 277
7.2.5 DNN 的Python 实现 278
7.3 支持向量机回归 . 281
7.3.1 基本问题 . 281
7.3.2 LS-SVMR 算法 . 284
7.3.3 LS-SVMR 算法的Python 实现 . 285
7.4 高斯过程回归 . 286
7.4.1 GPR 算法 287
7.4.2 GPR 算法的Python 实现 . 289
第8 章 时间序列分析 . 292
8.1 Box-Jenkins 方法 292
8.1.1 p 阶自回归模型 293
8.1.2 q 阶移动平均模型 295
8.1.3 自回归移动平均模型 . 296
8.1.4 ARIMA 模型 . 300
8.1.5 ARIMA 模型的Python 实现 . 301
8.2 门限自回归模型 . 309
8.2.1 TAR 模型的基本原理 309
8.2.2 TAR 模型的Python 实现 . 310
8.3 GARCH 模型族 313
8.3.1 线性ARCH 模型 313
8.3.2 GRACH 模型 315
8.3.3 EGARCH 模型 . 315
8.3.4 PowerARCH 模型 . 316
8.4 向量自回归模型 . 318
8.4.1 VAR 模型基本原理 318
8.4.2 VAR 模型的Python 实现 . 320
8.5 卡尔曼滤波 . 324
8.5.1 卡尔曼滤波算法介绍 . 324
8.5.2 卡尔曼滤波的Python 实现 326
8.6 循环神经网络 . 328
8.6.1 RNN 的基本原理 329
8.6.2 RNN 算法的Python 实现 332
8.7 长短期记忆网络 . 335
8.7.1 LSTM 模型的基本原理 . 336
8.7.2 LSTM 算法的Python 实现 341
第3 篇 预测应用
第9 章 短期日负荷曲线预测 . 345
9.1 电力行业负荷预测介绍 . 345
9.2 短期日负荷曲线预测的基本要求 . 346
9.3 预测建模准备 . 347
9.3.1 基础数据采集 . 347
9.3.2 缺失数据处理 . 349
9.3.3 潜在规律分析 . 352
9.4 基于DNN 算法的预测 355
9.4.1 数据要求 . 356
9.4.2 数据预处理 . 356
9.4.3 网络结构设计 . 357
9.4.4 建立模型 . 358
9.4.5 预测实现 . 359
9.4.6 效果评估 . 359
9.5 基于LSTM 算法的预测 361
9.5.1 数据要求 . 361
9.5.2 数据预处理 . 362
9.5.3 网络结构设计 . 362
9.5.4 建立模型 . 363
9.5.5 预测实现 . 364
9.5.6 效果评估 . 364
第10 章 股票价格预测 . 367
10.1 股票市场简介 . 367
10.2 获取股票数据 . 368
10.3 基于VAR 算法的预测 . 371
10.3.1 平稳性检验 . 371
10.3.2 VAR 模型定阶 372
10.3.3 预测及效果验证 . 373
10.4 基于LSTM 算法的预测. 375
10.4.1 数据要求 . 375
10.4.2 数据预处理 . 376
10.4.3 网络结构设计 . 377
10.4.4 建立模型 . 377
10.4.5 预测实现 . 378
10.4.6 效果评估 . 378
参考文献 . 381
作者介绍:
高级数据分析师,在互联网/电信/电力领域具有丰富的数据分析与挖掘建模经验。曾服务于华为技术软件有限公司、深圳市康拓普信息技术有限公司、深圳市数聚能源科技有限公司等企业,期间曾在小象学院兼职R语言数据挖掘讲师。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
Python 是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,因此,得到越来越多开发者的喜爱,广泛应用于Web 开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析与应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI 技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python 来做预测,不仅能够在业务上快速落地,还让代码维护起来更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。
《Python预测之美:数据分析与算法实战》共分为三部分。第一部分讲预测基础,主要涵盖预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握进行预测的基本步骤和方法思路。第二部分讲预测算法,该部分包含了多元回归分析、复杂回归分析、时间序列及进阶算法,内容比较有难度,需要细心品味。第三部分讲预测案例,包括短期日负荷曲线预测和股票价格预测两个实例,读者可以了解到实施预测时需要关注的技术细节。希望读者在看完本书后,能够将本书的精要融会贯通,进一步在工作和学习实践中提炼价值。
网站评分
书籍多样性:3分
书籍信息完全性:9分
网站更新速度:3分
使用便利性:4分
书籍清晰度:3分
书籍格式兼容性:7分
是否包含广告:7分
加载速度:9分
安全性:3分
稳定性:7分
搜索功能:4分
下载便捷性:3分
下载点评
- 赞(649+)
- 藏书馆(531+)
- mobi(534+)
- 下载快(210+)
- 品质不错(523+)
- 经典(588+)
- 排版满分(658+)
- 推荐购买(264+)
- epub(528+)
- 超值(374+)
- 微信读书(607+)
- 图书多(201+)
下载评价
- 网友 步***青:
。。。。。好
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 孙***夏:
中评,比上不足比下有余
- 网友 敖***菡:
是个好网站,很便捷
- 网友 堵***格:
OK,还可以
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 车***波:
很好,下载出来的内容没有乱码。
喜欢"Python预测之美:数据分析与算法实战"的人也看了
正版先秦玺印陶文货币石玉文字彙纂 白于蓝主编 段凯、马继编纂 古文字字形研究材料 工具书字典 战国文字文献整理 福建人民正版 下载 网盘 kindle mobi 115盘 pdf pdb rtf
护肾有方 肾病居家饮食治疗调养食谱健康中医养生保健护肾养肝书籍养生书籍 低盐低脂低蛋白饮食检查化验单药物防治并发症中医养生 下载 网盘 kindle mobi 115盘 pdf pdb rtf
大学物理实验(第2版) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
外科手术学基本技术及技巧 下载 网盘 kindle mobi 115盘 pdf pdb rtf
冒险大迷宫(全6册) 廉东星 编 下载 网盘 kindle mobi 115盘 pdf pdb rtf
羊皮卷 下载 网盘 kindle mobi 115盘 pdf pdb rtf
没有永远的拒绝,你只是暂时不被接受 下载 网盘 kindle mobi 115盘 pdf pdb rtf
计算机应用能力考试专用教程AutoCAD 2004制图软件(1CD) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
守护天使 风霞 上海文艺出版社 9787532171309 蔚蓝书店 下载 网盘 kindle mobi 115盘 pdf pdb rtf
全国计算机等级考试:二级基础知识与FORTRAN达标辅导·考试要点、试题分析与练习 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 设色条屏翎羽花竹(实用原大白描) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 爱情与金钱 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 11秋小学计算能手 5年级上 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 百鬼夜行-阴 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 全20册 人性的弱点卡耐基全集墨菲定律羊皮卷鬼谷子狼道方与圆莫非 抖音热门 人生读十本书成功励志书籍畅销书排行榜 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 起重机钢结构焊接制造技术 付荣柏 编著 机械工业出版社【正版】 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 蝙蝠侠:黑暗骑士归来(三十周年纪念版) 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 好会计2012湖北省会计从业资格考试辅导教材配套试卷 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 酒店会计与纳税真账实操从入门到精通 下载 网盘 kindle mobi 115盘 pdf pdb rtf
- 三师而行,远离肝癌 广东高等教育出版社 下载 网盘 kindle mobi 115盘 pdf pdb rtf
书籍真实打分
故事情节:9分
人物塑造:4分
主题深度:7分
文字风格:6分
语言运用:5分
文笔流畅:8分
思想传递:3分
知识深度:9分
知识广度:6分
实用性:6分
章节划分:8分
结构布局:9分
新颖与独特:4分
情感共鸣:5分
引人入胜:8分
现实相关:7分
沉浸感:5分
事实准确性:3分
文化贡献:8分